DESCRIPTION

The 7531 Group is the 8-bit microcomputer based on the 740 family core technology.
The 7531 Group has a serial I/O, 8-bit timers, and an A-D converter, and is useful for control of home electric appliances and office automation equipment.

FEATURES

- Basic machine-language instructions 69
- The minimum instruction execution time \qquad $0.50 \mu \mathrm{~s}$ (at 8 MHz oscillation frequency for the shortest instruction, in highspeed mode)
- Memory size ROM \qquad 8K to 16K bytes
RAM 256 to 384 bytes
- Programmable I/O ports 29
(25 in 32-pin version)
- Interrupts \qquad 12 sources, 8 vectors
(11 sources, 8 vectors for 32 -pin version)
- Timers \qquad 8 -bit $\times 3$
- Serial I/O1 \qquad 8 -bit $\times 1$ (UART)
- Serial I/O2 \qquad 8 -bit $\times 1$
(Clock-synchronized)
- A-D converter \qquad 10-bit $\times 8$ channels (6 channels for $32-$ pin version)
- Clock generating circuit . \qquad Built-in type (connect to external ceramic resonator or quartz-crystal oscillator permitting RC oscillation)
- Watchdog timer 16 -bit $\times 1$
- Power source voltage

At 8 MHz XIN oscillation frequency at ceramic oscillation 4.0 to 5.5 V

At 4 MHz XIN oscillation frequency at ceramic oscillation
2.4 to 5.5 V

At 2 MHz XIN oscillation frequency at ceramic oscillation
2.2 to 5.5 V

At 4 MHz XIN oscillation frequency at RC oscillation
4.0 to 5.5 V

At 2 MHz XIN oscillation frequency at RC oscillation
. 2.4 to 5.5 V
At 1 MHz XIN oscillation frequency at RC oscillation
2.2 to 5.5 V

- Power dissipation ... 25 mW (standard)
- Operating temperature range \qquad -20 to $85^{\circ} \mathrm{C}$ (-40 to $85^{\circ} \mathrm{C}$ or -40 to $125^{\circ} \mathrm{C}$ for extended operating temperature version)

APPLICATION

Office automation equipment, factory automation equipment, home electric appliances, consumer electronics, car, etc.

PIN CONFIGURATION (TOP VIEW)

Package type: 36P2R-A
Fig. 1 Pin configuration (36P2R package type)

Package type: 32P6B-A

Fig. 2 Pin configuration (32P6B package type)

Package type: 32P4B

Fig. 3 Pin configuration (32P4B package type)

Package type: 42S1M

Fig. 4 Pin configuration (42S1M package type)

FUNCTIONAL BLOCK

Fig. 5 Functional block diagram (36P2R package)

Fig. 6 Functional block diagram (32P6B package)

Fig. 7 Functional block diagram (32P4B package)

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Function	Function expect a port function
Vcc, Vss	Power source (Note 1)	-Apply voltage of 2.2-5.5 V to Vcc, and 0 V to Vss.	
Vref	Analog reference voltage	-Reference voltage input pin for A-D converter	
CNVss	CNVss	- Chip operating mode control pin, which is always connected to Vss.	
RESET	Reset input	- Reset input pin for active "L"	
Xin Xout	Clock input	-Input and output pins for main clock generating circuit -Connect a ceramic resonator or quartz crystal oscillator between the XIN and Xout pins. -For using RC oscillator, short between the XIN and Xout pins, and connect the capacitor and resistor. -If an external clock is used, connect the clock source to the Xin pin and leave the Xout pin open.	
P00-P07	I/O port P0	-8-bit I/O port. -I/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level -CMOS 3-state output structure -Whether a built-in pull-up resistor is to be used or not can be determined by program.	-Key-input (key-on wake up interrupt input) pins
$\begin{aligned} & \mathrm{P} 10 / \mathrm{RxD} \\ & \mathrm{P} 11 / \mathrm{TxD} \\ & \hline \end{aligned}$	I/O port P1	-5-bit l/O port - $/$ O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level -CMOS 3-state output structure -CMOS/TTL level can be switched for P10, P12 and P13	-Serial l/O1 function pin
$\begin{aligned} & \mathrm{P} 12 / \mathrm{SCLK} \\ & \mathrm{P} 13 / \text { SDATA } \end{aligned}$			-Serial I/O2 function pin
P14/CNTR0			-Timer X function pin
$\begin{aligned} & \text { P20/AN0- } \\ & \text { P27/AN7 } \end{aligned}$	I/O port P2 (Note 2)	$\cdot 8$-bit I/O port having almost the same function as P0 -CMOS compatible input level -CMOS 3-state output structure	- Input pins for A-D converter
P30-P35	I/O port P3 (Note 3)	-8-bit I/O port -I/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level (CMOS/TTL level can be switched for P36 and P37). -CMOS 3-state output structure -P3o to P36 can output a large current for driving LED.	
$\begin{aligned} & \text { P36/INT1 } \\ & \text { P37/INT0 } \end{aligned}$		-Whether a built-in pull-up resistor is to be used or not can be determined by program.	-Interrupt input pins

Notes 1: VCC $=2.4$ to 5.5 V for the extended operating temperature version (-40 to $85^{\circ} \mathrm{C}$) and the extended operating temperature $125^{\circ} \mathrm{C}$ version (-40 to $125^{\circ} \mathrm{C}$).
2: 6-bit I/O port (P20-P25) for the 32-pin version.
3: 6-bit I/O port (P30-P34, P37/INT0) for the 32-pin version.

GROUP EXPANSION

Mitsubishi plans to expand the 7531 group as follow:

Memory type

Support for Mask ROM version, One Time PROM version, and Emulator MCU .

Memory size

ROM/PROM size ... 8 K to 16 K bytes
RAM size ... 256 to 384 bytes

Package

32P4B .. 32 pin plastic molded SDIP 32P6B-A 0.8 mm-pitch plastic molded LQFP 36P2R-A 0.8 mm-pitch plastic molded SSOP 42S1M 42 pin shrink ceramic PIGGY BACK

Note. Products under development: the development schedule and specification may be revised without notice.

Fig. 8 Memory expansion plan

Currently supported products are listed below.

Table 2 List of supported products

Product	(P) ROM size (bytes) ROM size for User ()	RAM size (bytes)	Package	Remarks
M37531M4-XXXSP	8192 (8062)	256	32P4B	Mask ROM version
M37531M4T-XXXSP				Mask ROM version (extended operating temperature version)
M37531E4SP				One Time PROM version (blank)
M37531M4-XXXFP			36P2R-A	Mask ROM version
M37531M4T-XXXFP				Mask ROM version (extended operating temperature version)
M37531E4FP				One Time PROM version (blank)
M37531M4-XXXGP			32P6B-A	Mask ROM version
M37531M4T-XXXGP				Mask ROM version (extended operating temperature version)
M37531M4V-XXXGP				Mask ROM version (extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37531E4GP				One Time PROM version (blank)
M37531E4T-XXXGP				One Time PROM version (shipped after programming, extended operating temperature version)
M37531E4V-XXXGP				One Time PROM version (shipped after programming, extended operating temperature $125^{\circ} \mathrm{C}$ version)
M37531M8-XXXSP	16384 (16254)	384	32P4B	Mask ROM version
M37531E8SP				One Time PROM version (blank)
M37531M8-XXXFP			36P2R-A	Mask ROM version
M37531E8FP				One Time PROM version (blank)
M37531M8-XXXGP			32P6B-A	Mask ROM version
M37531RSS	-		42S1M	Emulator MCU

FUNCTIONAL DESCRIPTION

CPU

[CPU Mode Register] CPUM

The CPU mode register contains the stack page selection bit.
This register is allocated at address 003B16.

Switching method of CPU mode register

Switch the CPU mode register (CPUM) at the head of program after releasing Reset in the following method.

Note 1: The bit can be rewritten only once after releasing reset. After rewriting it is disable to write any data to the bit. However, by reset the bit is initialized and can be rewritten, again.
2: These bits are used only when a ceramic oscillation is selected Do not use these when an RC oscillation is selected.

Fig. 9 Structure of CPU mode register

Note. After releasing reset the operation starts by starting a ring oscillator automatically. Do not use a ring oscillator at ordinary operation.

Fig. 10 Switching method of CPU mode register

Memory

Special function register (SFR) area

The SFR area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for a stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is a user area for storing programs.

Interrupt vector area

The interrupt vector area contains reset and interrupt vectors

Zero page

The 256 bytes from addresses 000016 to 00FF 16 are called the zero page area. The internal RAM and the special function registers (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory and register addresses in the zero page area. Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special page

The 256 bytes from addresses FF0016 to FFFF16 are called the special page area. The special page addressing mode can be used to specify memory addresses in the special page area. Access to this area with only 2 bytes is possible in the special page addressing mode.

Fig. 11 Memory map diagram

$\begin{aligned} & 002016 \\ & 002116 \end{aligned}$	
002216	
002316	
002416	
002516	
002616	
002716	
002816	Prescaler 12 (PRE12)
002916	Timer 1 (T1)
002A16	Timer 2 (T2)
002B16	Timer X mode register (TM)
002C16	Prescaler X (PREX)
002D16	Timer X (TX)
002E16	Timer count source set register (TCSS)
002F16	
003016	Serial I/O2 control register (SIO2CON)
003116	Serial I/O2 register (SIO2)
003216	
003316	
003416	A-D control register (ADCON)
003516	A-D conversion register (low-order) (ADL)
003616	A-D conversion register (high-order) (ADH)
003716	
003816	MISRG
003916	Watchdog timer control register (WDTCON)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
003C16	Interrupt request register 1 (IREQ1)
003D16	
003E16	Interrupt control register 1 (ICON1)
003F16	

Note : Do not access to the SFR area including nothing.
Fig. 12 Memory map of special function register (SFR)

I/O Ports

[Direction registers] PiD

The I/O ports have direction registers which determine the input/output direction of each pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input or output.
When " 1 " is set to the bit corresponding to a pin, this pin becomes an output port. When " 0 " is set to the bit, the pin becomes an input port. When data is read from a pin set to output, not the value of the pin itself but the value of port latch is read. Pins set to input are floating, and permit reading pin values.
If a pin set to input is written to, only the port latch is written to and the pin remains floating.

[Pull-up control] PULL

By setting the pull-up control register (address 001616), ports P0 and P3 can exert pull-up control by program. However, pins set to output are disconnected from this control and cannot exert pull-up control.

[Port P1P3 control] P1P3C

By setting the port P1P3 control register (address 001716), a CMOS input level or a TTL input level can be selected for ports P10, P12, P13, P36, and P37 by program.

Note 1: Pins set to output ports are disconnected from pull-up control.
2: Keep setting the P3 5, P36 pull-up control bit to "1" (initial value) for 32-pin version.
Fig. 13 Structure of pull-up control register

Note: Keep setting the P3 6/INT1 input level selection bit to "0" (initial value) for 32-pin version.

Fig. 14 Structure of port P1P3 control register

Table 5 I/O port function table

Pin	Name	Input/output	I/O format	Non-port function	Related SFRs	Diagram No.
$\mathrm{P} 00-\mathrm{P} 07$	I/O port P0	I/O individual bits	-CMOS compatible input level -CMOS 3-state output (Note 1)	Key input interrupt	Pull-up control register	(1)
$\begin{aligned} & \hline \text { P10/RxD } \\ & \text { P11/TxD } \end{aligned}$	I/O port P1			Serial I/O1 function input/output	Serial I/O1 control register	$\overline{(2)}$ (3)
P12/Sclk P13/Sdata				Serial I/O2 function input/output	Serial I/O2 control register	(4) (5)
P14/CNTR0				Timer X function input/output	Timer X mode register	(6)
$\begin{aligned} & \text { P20/AN0- } \\ & \text { P27/AN7 } \end{aligned}$	I/O port P2 (Note 2)			A-D conversion input	A-D control register	(7)
P30-P35	I/O port P3 (Note 3)					(8)
P36/INT1 P37/INT0				External interrupt input	Interrupt edge selection register	(9)

Notes 1: Ports P10, P12, P13, P36, and P37 are CMOS/TTL level.
2: The $\mathrm{P} 26 / \mathrm{AN} 6$ and $\mathrm{P} 27 / \mathrm{AN} 7$ pins do not exist for the 32-pin version.
3: The P 35 and $\mathrm{P} 36 / \mathrm{INT} 1$ pins do not exist for the 32 -pin version.

(2) Port P10

Serial I/O1 enable bit (b7)

(4) Port P12

(6) Port P14

$\mathrm{P} 10, \mathrm{P} 12, \mathrm{P} 13, \mathrm{P} 36$, and P37 input level are switched to the CMOS/TTL level by the port P1P3 control register. When the TTL level is selected, there is no hysteresis characteristics.

Fig. 15 Block diagram of ports (1)
(7) Ports P20 - P27

(8) Ports P30-P35

(9) Ports P36, P37

$\mathrm{P} 10, \mathrm{P} 12, \mathrm{P} 13, \mathrm{P} 36$, and P 37 input level are switched to the CMOS/TTL level by the port P1P3 control register. When the TTL level is selected, there is no hysteresis characteristics.

Fig. 16 Block diagram of ports (2)

Interrupts

Interrupts occur by 12 different sources : 4 external sources, 7 internal sources and 1 software source.

Interrupt control

All interrupts except the BRK instruction interrupt have an interrupt request bit and an interrupt enable bit, and they are controlled by the interrupt disable flag. When the interrupt enable bit and the interrupt request bit are set to " 1 " and the interrupt disable flag is set to " 0 ", an interrupt is accepted.
The interrupt request bit can be cleared by program but not be set. The interrupt enable bit can be set and cleared by program.
It becomes usable by switching CNTRo and AD conversion interrupt sources with bit 7 of the interrupt edge selection register, timer 2 and serial I/O2 interrupt sources with bit 6, timer X and key-on wake-up interrupt sources with bit 5, and serial I/O1 transmit and INT1 interrupt sources with bit 4.
The reset and BRK instruction interrupt can never be disabled with any flag or bit. All interrupts except these are disabled when the interrupt disable flag is set.
When several interrupts occur at the same time, the interrupts are received according to priority.

Interrupt operation

Upon acceptance of an interrupt the following operations are automatically performed:

1. The processing being executed is stopped.
2. The contents of the program counter and processor status register are automatically pushed onto the stack.
3. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
4. Concurrently with the push operation, the interrupt destination address is read from the vector table into the program counter.

Notes on use

When the active edge of an external interrupt (INT0, INT ${ }_{1}$, CNTRo) is set, the interrupt request bit may be set.
Therefore, please take following sequence:

1. Disable the external interrupt which is selected.
2. Change the active edge in interrupt edge selection register. (in case of CNTRo: Timer X mode register)
3. Clear the set interrupt request bit to " 0 ".
4. Enable the external interrupt which is selected.

Table 6 Interrupt vector address and priority

Interrupt source	Priority	Vector addresses (Note 1)		Interrupt request generating conditions	Remarks
		High-order	Low-order		
Reset (Note 2)	1	FFFD16	FFFC16	At reset input	Non-maskable
Serial I/O1 receive	2	FFFB16	FFFA16	At completion of serial I/O1 data receive	Valid when serial I/O1 is selected
Serial I/O1 transmit	3	FFF916	FFF816	At completion of serial I/O1 transmit shift or when transmit buffer is empty	Valid when serial I/O1 is selected
INT1 (Note 3)				At detection of either rising or falling edge of INT 1 input	External interrupt (active edge selectable)
INT0	4	FFF716	FFF616	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
Timer X	5	FFF516	FFF416	At timer X underflow	
Key-on wake-up				At falling of conjunction of input logical level for port P0 (at input)	External interrupt (valid at falling)
Timer 1	6	FFF316	FFF216	At timer 1 underflow	STP release timer underflow
Timer 2	7	FFF116	FFF016	At timer 2 underflow	
Serial I/O2				At completion of transmit/receive shift	
CNTR0	8	FFEF16	FFEE16	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)
A-D conversion				At completion of A-D conversion	
BRK instruction	9	FFED16	FFEC ${ }_{16}$	At BRK instruction execution	Non-maskable software interrupt

Note 1: Vector addressed contain internal jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.
3: It is an interrupt which can use only for 36 pin version.

Fig. 17 Interrupt control

0 : No interrupt request issued
1 : Interrupt request issued

0 : Interrupts disabled 1 : Interrupts enabled

Fig. 18 Structure of Interrupt-related registers

Key Input Interrupt (Key-On Wake-Up)

A key-on wake-up interrupt request is generated by applying "L" level to any pin of port P0 that has been set to input mode.
In other words, it is generated when the AND of input level goes from " 1 " to " 0 ". An example of using a key input interrupt is shown in Figure 21, where an interrupt request is generated by pressing one of the keys provided as an active-low key matrix which uses ports P00 to PO_{3} as input ports.

Fig. 19 Connection example when using key input interrupt and port P0 block diagram

Timers

The 7531 Group has 3 timers: timer X, timer 1 and timer 2.
The division ratio of every timer and prescaler is $1 /(n+1)$ provided that the value of the timer latch or prescaler is n.
All the timers are down count timers. When a timer reaches " 0 ", an underflow occurs at the next count pulse, and the corresponding timer latch is reloaded into the timer. When a timer underflows, the interrupt request bit corresponding to each timer is set to " 1 ".

-Timer 1, Timer 2

Prescaler 12 always counts $f\left(X_{i N}\right) / 16$. Timer 1 and timer 2 always count the prescaler output and periodically sets the interrupt request bit.

-Timer X

Timer X can be selected in one of 4 operating modes by setting the timer X mode register.

- Timer Mode

The timer counts the signal selected by the timer X count source selection bit.

- Pulse Output Mode

The timer counts the signal selected by the timer X count source selection bit, and outputs a signal whose polarity is inverted each time the timer value reaches " 0 ", from the CNTRo pin.
When the CNTRo active edge switch bit is " 0 ", the output of the CNTRo pin is started with an "H" output.
At " 1 ", this output is started with an " L " output. When using a timer in this mode, set the port P14 direction register to output mode.

- Event Counter Mode

The operation in the event counter mode is the same as that in the timer mode except that the timer counts the input signal from the CNTRo pin.
When the CNTRo active edge switch bit is " 0 ", the timer counts the rising edge of the CNTRo pin. When this bit is " 1 ", the timer counts the falling edge of the CNTRo pin.

- Pulse Width Measurement Mode

When the CNTRo active edge switch bit is " 0 ", the timer counts the signal selected by the timer X count source selection bit while the CNTRo pin is " H ". When this bit is " 1 ", the timer counts the signal while the CNTRo pin is " L ".
In any mode, the timer count can be stopped by setting the timer X count stop bit to " 1 ". Each time the timer overflows, the interrupt request bit is set.

Fig. 20 Structure of timer X mode register

Fig. 21 Timer count source setting register

Fig. 22 Block diagram of timer X, timer 1 and timer 2

Serial I/O

-Serial I/01

Serial I/O1 can be used as an asynchronous (UART) serial I/O. A dedicated timer (baud rate generator) is also provided for baud rate generation when serial I/O1 is in operation.
Eight serial data transfer formats can be selected, and the transfer formats to be used by a transmitter and a receiver must be identical. Each of the transmit and receive shift registers has a buffer register (the same address on memory). Since the shift register cannot be written to or read from directly, transmit data is written to the transmit
buffer, and receive data is read from the respective buffer registers. These buffer registers can also hold the next data to be transmitted and receive 2-byte receive data in succession.
By selecting "1" for continuous transmit valid bit (bit 2 of SIO1CON), continuous transmission of the same data is made possible. This can be used as a simplified PWM.

Fig. 23 Block diagram of UART serial I/O

Fig. 24 Operation of UART serial I/O function

[Serial I/O1 control register] SIO1CON

The serial I/O1 control register consists of eight control bits for the serial I/O1 function.

[UART control register] UARTCON

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer. One bit in this register (bit 4) is always valid and sets the output structure of the P11/TxD pin.

[Serial I/01 status register] SIO1STS

The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing " 11 " to bits 7 and 6 of the serial I/O1 control register initializes this register.
All bits of the serial I/O1 status register are initialized to " 8116 " at reset.

[Transmit/Receive buffer register] TB/RB

The transmit buffer and the receive buffer are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7-bit, the MSB of data stored in the receive buffer is " 0 ".

[Baud Rate Generator] BRG

The baud rate generator determines the baud rate for serial transfer. The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the baud rate generator.

Fig. 25 Continuous transmission operation of UART serial I/O

Fig. 26 Structure of serial I/O1-related registers (1)

-Serial I/O2

The serial I/O2 function can be used only for clock synchronous serial I/O.
For clock synchronous serial I/O2 the transmitter and the receiver must use the same clock. When the internal clock is used, transfer is started by a write signal to the serial I/O2 register.

[Serial I/O2 control register] SIO2CON

The serial I/O2 control register contains 8 bits which control various serial I/O functions.
-Set "0" to bit 3 to receive.
-At reception, clear bit 7 to " 0 " by writing a dummy data to the serial I/ O2 register after completion of shift.
-Bit 7 is set to " 1 " a half cycle (of the shift clock) earlier than completion of shift operation. Accordingly, when using this bit to confirm shift completion, a half cycle or more of the shift clock must pass after confirming that this bit is set to " 1 ", before performing read/ write to the serial $\mathrm{I} / \mathrm{O} 2$ register.

Fig. 27 Structure of serial I/O2 control registers

Fig. 28 Block diagram of serial I/O2

Serial I/O2 operation

By writing to the serial I/O2 register (address 003116) the serial I/O2 counter is set to " 7 ".
After writing, the SDATA pin outputs data every time the transfer clock shifts from a high to a low level. And, as the transfer clock shifts from a low to a high, the SDATA pin reads data, and at the same time the contents of the serial I/O2 register are shifted by 1 bit.
When the internal clock is selected as the transfer clock source, the following operations execute as the transfer clock counts up to 8.

- Serial I/O2 counter is cleared to " 0 ".
- Transfer clock stops at an "H" level.
- Interrupt request bit is set.
- Shift completion flag is set.

Also, the SDATA pin is in a high impedance state after the data transfer is complete (refer to Figure 29).
When the external clock is selected as the transfer clock source, the interrupt request bit is set as the transfer clock counts up to 8, but external control of the clock is required since it does not stop. Notice that the SdATA pin is not in a high impedance state on the completion of data transfer.

Fig. 29 Serial I/O2 timing (LSB first)

A-D Converter

The functional blocks of the A-D converter are described below.

[A-D conversion register] AD

The A-D conversion register is a read-only register that stores the result of A-D conversion. Do not read out this register during an A-D conversion.

[A-D control register] ADCON

The A-D control register controls the A-D converter. Bit 2 to 0 are analog input pin selection bits. Bit 4 is the AD conversion completion bit. The value of this bit remains at " 0 " during A-D conversion, and changes to " 1 " at completion of A-D conversion.
A-D conversion is started by setting this bit to " 0 ".

[Comparison voltage generator]

The comparison voltage generator divides the voltage between Vss and VREF by 1024 by a resistor ladder, and outputs the divided voltages. Since the generator is disconnected from Vref pin and Vss pin, current is not flowing into the resistor ladder.

[Channel Selector]

The channel selector selects one of ports P27/AN7 to P2o/ANo, and inputs the voltage to the comparator.

[Comparator and control circuit]

The comparator and control circuit compares an analog input voltage with the comparison voltage and stores its result into the A-D conversion register. When A-D conversion is completed, the control circuit sets the AD conversion completion bit and the AD interrupt request bit to " 1 ". Because the comparator is constructed linked to a capacitor, set $f(\mathrm{XIN})$ to 500 kHz or more during A-D conversion.

Note: These can be used only for 36 pin version.
Fig. 30 Structure of A-D control register

Read 8-bit (Read only address 003516)

Read 10-bit (read in order address 003616,003516)

Note: High-order 6-bit of address 003616 returns " 0 " when read.
Fig. 31 Structure of A-D conversion register

Fig. 32 Block diagram of A-D converter

Watchdog Timer

The watchdog timer gives a means for returning to a reset status when the program fails to run on its normal loop due to a runaway. The watchdog timer consists of an 8-bit watchdog timer H and an 8bit watchdog timer L, being a 16-bit counter.

Standard operation of watchdog timer

The watchdog timer stops when the watchdog timer control register (address 003916) is not set after reset. Writing an optional value to the watchdog timer control register (address 003916) causes the watchdog timer to start to count down. When the watchdog timer H underflows, an internal reset occurs. Accordingly, it is programmed that the watchdog timer control register (address 003916) can be set before an underflow occurs.
When the watchdog timer control register (address 003916) is read, the values of the high-order 6-bit of the watchdog timer H , STP instruction disable bit and watchdog timer H count source selection bit are read.

Operation of watchdog timer H count source selection bit

A watchdog timer H count source can be selected by bit 7 of the watchdog timer control register (address 003916). When this bit is " 0 ", the count source becomes a watchdog timer L underflow signal. The detection time is 131.072 ms at $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$.
When this bit is " 1 ", the count source becomes $f(X I N) / 16$. In this case, the detection time is $512 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$.
This bit is cleared to "0" after reset.

Operation of STP instruction disable bit

When the watchdog timer is in operation, the STP instruction can be disabled by bit 6 of the watchdog timer control register (address 003916).

When this bit is " 0 ", the STP instruction is enabled.
When this bit is " 1 ", the STP instruction is disabled, and an internal reset occurs if the STP instruction is executed.
Once this bit is set to " 1 ", it cannot be changed to " 0 " by program. This bit is cleared to "0" after reset.

Initial value of watchdog timer

By a reset or writing to the watchdog timer control register (address 003916), the watchdog timer H is set to " FF_{16} " and the watchdog timer L is set to " $F F_{16}$ ".

Fig. 33 Block diagram of watchdog timer

Fig. 34 Structure of watchdog timer control register

Reset Circuit

The microcomputer is put into a reset status by holding the RESET pin at the " L " level for the following interval or more according to the power source voltage and XIN is in stable oscillation.
After that, this reset status is released by returning the RESET pin to the "H" level. The program starts from the address having the contents of address FFFD16 as high-order address and the contents of address FFFC16 as low-order address.
When Vcc $=2.2$ to 5.5 V , reset input " L " interval is $45 \mu \mathrm{~s}$ or more When $\mathrm{Vcc}=2.4$ to 5.5 V , reset input " L " interval is $35 \mu \mathrm{~s}$ or more When Vcc $=4.0$ to 5.5 V , reset input "L" interval is $15 \mu \mathrm{~s}$ or more

In the case of $\mathrm{f}(\phi) \leq 4 \mathrm{MHz}$, the reset input voltage must be 0.8 V or less when the power source voltage passes 4.0 V .
In the case of $f(\phi) \leq 2 \mathrm{MHz}$, the reset input voltage must be 0.48 V or less when the power source voltage passes 2.4 V .
In the case of $\mathrm{f}(\phi) \leq 1 \mathrm{MHz}$, the reset input voltage must be 0.44 V or less when the power source voltage passes 2.2 V .

Fig. 35 Example of reset circuit

Fig. 36 Timing diagram at reset
(1) Port P0 direction register
(2) Port P1 direction register
(3) Port P2 direction register
(4) Port P3 direction register
(5) Pull-up control register
(6) Port P1P3 control register
(7) Serial I/O1 status register
(8) Serial I/O1 control register
(9) UART control register
(10) Prescaler 12
(11) Timer 1
(12) Timer 2
(13) Timer X mode register
(14) Prescaler X
(15) Timer X
(16) Timer count source set register
(17) Serial I/O2 control register
(18) A-D control register
(19) MISRG
(20) Watchdog timer control register
(21) Interrupt edge selection register
(22) CPU mode register
(23) Interrupt request register 1
(24) Interrupt control register 1
(25) Processor status register
(26) Program counter

Address Register contents

000116	0016							
000316	X	X	X	0	0	0	0	0
000516	0016							
000716	0016							
001616	FF16							
001716	0016							
001916	1	0	0	0	0	0	0	1
001A16	0216							
001B16	1	1	1	0	0	0	0	0
002816	FF16							
002916	0116							
002A16	0016							
002B16	0016							
002C16	FF16							
002D16	FF16							
002E16	0016							
003016	0016							
003416	1016							
003816	0016							
003916	0	0	1	1	1	1	1	1
003A16	0016							
003B16	1	0	0	0	0	0	0	0
003C16	0016							
003E16	0016							
(PS)	X	X	X	X	X	1	X	X
(PCH)	Contents of address FFFD16							
(PCL)	Contents of address FFFC16							

Note X : Undefined

Fig. 37 Internal status of microcomputer at reset

Clock Generating Circuit

An oscillation circuit can be formed by connecting a resonator between XIn and Xout, and an RC oscillation circuit can be formed by connecting a resistor and a capacitor.
Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and Xout since a feed-back resistor exists on-chip.
Set the constants of the resistor and capacitor when an RC oscillator is used, so that a frequency variation due to LSI variation and resistor and capacitor variations may not exceed the standard input frequency.

-Oscillation control

- Stop mode

When the STP instruction is executed, the internal clock f stops at an "H" level and the XIN oscillator stops. At this time, timer 1 is set to " 0116 " and prescaler 12 is set to " FF_{16} " when the oscillation stabilization time set bit after release of the STP instruction is " 0 ". On the other hand, timer 1 and prescaler 12 are not set when the above bit is " 1 ". Accordingly, set the wait time fit for the oscillation stabilization time of the oscillator to be used. $f(\mathrm{XIN}) / 16$ is forcibly connected to the input of prescaler 12. When an external interrupt is accepted, oscillation is restarted but the internal clock f remains at "H" until timer 1 underflows. As soon as timer 1 underflows, the internal clock f is supplied. This is because when a ceramic oscillator is used, some time is required until a start of oscillation. In case oscillation is restarted by reset, no wait time is generated. So apply an "L" level to the RESET pin while oscillation becomes stable.

- Wait mode

If the WIT instruction is executed, the internal clock f stops at an "H" level, but the oscillator does not stop. The internal clock restarts if a reset occurs or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted. To ensure that interrupts will be received to release the STP or WIT state, interrupt enable bits must be set to " 1 " before the STP or WIT instruction is executed.
When the STP status is released, prescaler 12 and timer 1 will start counting clock which is XIN divided by 16, so set the timer 1 interrupt enable bit to " 0 " before the STP instruction is executed.

Note

For use with the oscillation stabilization set bit after release of the STP instruction set to "1", set values in timer 1 and prescaler 12 after fully appreciating the oscillation stabilization time of the oscillator to be used.

-Switch of ceramic and RC oscillations

After releasing reset the operation starts by starting a built-in ring oscillator. Then, a ceramic oscillation or an RC oscillation is selected by setting bit 5 of the CPU mode register.
The bit 5 can be rewritten only once after releasing reset. However, after rewriting it is disable to write any value to the bit.

-Double-speed mode

When a ceramic oscillation is selected, a double-speed mode can be used. Do not use it when an RC oscillation is selected.

Fig. 41 Structure of MISRG

Fig. 38 External circuit of ceramic resonator

Fig. 39 External circuit of RC oscillation

Fig. 40 External clock input circuit

Fig. 42 Block diagram of internal clock generating circuit (for ceramic resonator)

Fig. 43 Block diagram of internal clock generating circuit (for RC oscillation)

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after reset are undefined except for the interrupt disable flag I which is "1". After reset, initialize flags which affect program execution. In particular, it is essential to initialize the T flag and the D flag because of their effect on calculations.

Interrupts

The contents of the interrupt request bit do not change even if the BBC or BBS instruction is executed immediately after they are changed by program because this instruction is executed for the previous contents. For executing the instruction for the changed contents, execute one instruction before executing the BBC or BBS instruction.

Decimal Calculations

- For calculations in decimal notation, set the decimal mode flag D to " 1 ", then execute the ADC instruction or SBC instruction. In this case, execute SEC instruction, CLC instruction or CLD instruction after executing one instruction before the ADC instruction or SBC instruction.
- In the decimal mode, the values of the N (negative), V (overflow) and Z (zero) flags are invalid.

Timers

- When $\mathrm{n}(0$ to 255$)$ is written to a timer latch, the frequency division ratio is $1 /(n+1)$.
- When a count source of timer X is switched, stop a count of timer X.

Ports

- The values of the port direction registers cannot be read.

That is, it is impossible to use the LDA instruction, memory operation instruction when the T flag is " 1 ", addressing mode using direction register values as qualifiers, and bit test instructions such as BBC and BBS.
It is also impossible to use bit operation instructions such as CLB and SEB and read/modify/write instructions of direction registers for calculations such as ROR.
For setting direction registers, use the LDM instruction, STA instruction, etc.

- Set "1" to each bit 6 of the port P3 direction register and the port P3 register.

A-D Converter

The comparator uses internal capacitors whose charge will be lost if the clock frequency is too low.
Make sure that $f\left(X_{I N}\right)$ is 500 kHz or more during A-D conversion. Do not execute the STP instruction during A-D conversion.

Instruction Execution Timing

The instruction execution time can be obtained by multiplying the frequency of the internal clock ϕ by the number of cycles mentioned in the machine-language instruction table.
The frequency of the internal clock ϕ is the same as that of the XIN in double-speed mode, twice the XIN cycle in high-speed mode and 8 times the XIN cycle in middle-speed mode.

CPU Mode Register

The oscillation mode selection bit can be rewritten only once after releasing reset. However, after rewriting it is disable to write any value to the bit.
When a ceramic oscillation is selected, a double-speed mode of the clock division ratio selection bits can be used. Do not use it when an RC oscillation is selected.

NOTES ON USE

Handling of Power Source Pin

In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power source pin (Vcc pin) and GND pin (Vss pin). Besides, connect the capacitor to as close as possible. For bypass capacitor which should not be located too far from the pins to be connected, a ceramic capacitor of $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ is recommended.

One Time PROM Version

The CNVss pin is connected to the internal memory circuit block by a low-ohmic resistance, since it has the multiplexed function to be a programmable power source pin (VPP pin) as well.
To improve the noise reduction, connect a track between CNVss pin and Vss pin with 1 to $10 \mathrm{k} \Omega$ resistance.
The mask ROM version track of CNVss pin has no operational interference even if it is connected via a resistor.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:
(1) Mask ROM Order Confirmation Form
(2) Mark Specification Form
(3) Data to be written to ROM, in EPROM form (three identical copies)

DATA REQUIRED FOR ROM PROGRAMMING

ORDERS

The following are necessary when ordering a ROM writing:
(1) ROM Programming Confirmation Form
(2) Mark Specification Form (for Special Mark)
(3) Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Table 7 Special programming adapter

Package	Name of Programming Adapter
32P4B	PCA7435SP
32P6B-A	PCA7435GP
36P2R-A	PCA7435FP

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 44 is recommended to verify programming.

Caution: The screening temperature is far higher than the storage temperature. Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Fig. 44 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

(1) 7531 Group (General purpose)

Applied to: M37531M4-XXXFP/SP/GP, M37531M8-XXXFP/SP/GP, M37531E4FP/SP/GP, M37531E8FP/SP

Table 8 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 7.0	V
VI	Input voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27$, $\mathrm{P} 30-\mathrm{P} 37$, VREF		-0.3 to Vcc +0.3	V
Vı	Input voltage $\overline{\text { RESET, XIN }}$		-0.3 to Vcc +0.3	V
VI	Input voltage CNVss (Note 1)		-0.3 to 13	V
Vo	Output voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27$, $\mathrm{P} 30-\mathrm{P} 37$, XOUT		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300 (Note 2)	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note 1: It is a rating only for the One Time PROM version. Connect to Vss for the mask ROM version.
2: 200 mW for the 32P6B package product.

Table 9 Recommended operating conditions (1)
(Vcc = 2.2 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter			Limits			Unit
				Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)		4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)		2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)		2.2	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (Double-speed mode)		4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (Double-speed mode)		2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=1 \mathrm{MHz}$ (Double-speed mode)		2.2	5.0	5.5	V
	Power source voltage (CR)	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)		4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)		2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=1 \mathrm{MHz}$ (High-, Middle-speed mode)		2.2	5.0	5.5	V
Vss	Power source voltage				0		V
VREF	Analog reference voltage			2.0		Vcc	V
VIH	" H " input voltage		$\begin{aligned} & \hline \mathrm{P00-P07,} \mathrm{P10-P14,} \mathrm{P20-P27,} \\ & \text { P30-P37 } \end{aligned}$	0.8Vcc		Vcc	V
VIH	"H" input voltage (TTL input level selected)		P10, P12, P13, P36, P37 (Note 1)	2.0		Vcc	V
VIH	" H " input voltage		RESET, XIN	0.8 Vcc		Vcc	V
VIL	"L" input voltage		$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P30-P37 } \end{aligned}$	0		0.3Vcc	V
VIL	"L" input voltage (TTL input level selected)		P10, P12, P13, P36, P37 (Note 1)	0		0.8	V
VIL	"L" input voltage		RESET, CNVss	0		0.2 Vcc	V
VIL	"L" input voltage		XIN	0		0.16 Vcc	V
$\sum \mathrm{IOH}$ (peak)	"H" total peak output current (Note 2)		$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P30-P37 } \end{aligned}$			-80	mA
£ IoL(peak)	"L" total peak output current (Note 2)		$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P37 } \end{aligned}$			80	mA
EloL(peak)	"L" total peak output current (Note 2)		P30-P36			60	mA
£ loH (avg)	"H" total average output current (Note 2)		$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P30-P37 } \end{aligned}$			-40	mA
£loL(avg)	"L" total average output current (Note 2)		$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P37 } \end{aligned}$			40	mA
EloL(avg)	"L" total average output current (Note 2)		P30-P36			30	mA

Note 1: Vcc = 4.0 to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Table 10 Recommended operating conditions (2)
(Vcc = 2.2 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
$\mathrm{IOH}($ peak)	"H" peak output current (Note 1)	$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P30-P37 } \end{aligned}$			-10	mA
IOL(peak)	"L" peak output current (Note 1)	$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P37 } \end{aligned}$			10	mA
IOL(peak)	"L" peak output current (Note 1)	P30-P36			30	mA
IOH(avg)	"H" average output current (Note 2)	$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P30-P37 } \end{aligned}$			-5	mA
IOL(avg)	"L" average output current (Note 2)	$\begin{aligned} & \text { P00-P07, P10-P14, P20-P27, } \\ & \text { P37 } \end{aligned}$			5	mA
IOL(avg)	"L" average output current (Note 2)	P30-P36			15	mA
f (XIN)	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	Vcc $=4.0$ to 5.5 V Double-speed mode			4	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=2.4 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			2	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=2.2 \text { to } 5.5 \mathrm{~V}$ Double-speed mode			1	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			8	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=2.2 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { Vcc }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VcC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { Vcc }=2.2 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			1	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current $\mathrm{IOL}(\mathrm{avg}), \mathrm{IOH}(\mathrm{avg})$ in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Table 11 Electrical characteristics
(VCC = 2.2 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Notes 1: P11 is measured when the P11/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ". 2: RXD, ScLK, SDATA, INT0, and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level). 3: It is available only when operating key-on wake up.

Table 12 A-D Converter characteristics
(VCC = 2.7 to 5.5 V , VSS $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				10	Bits
-	Linearity error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 3	LSB
-	Differential nonlinear error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 0.9	LSB
Vot	Zero transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	0	5	20	mV
		$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	0	3	15	mV
VFST	Full scale transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	5105	5115	5125	mV
		$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	3060	3069	3075	mV
tCONV	Conversion time				122	tc(XIN)
Rladder	Ladder resistor			55		$\mathrm{k} \Omega$
IVREF	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
		VREF $=3.0 \mathrm{~V}$	30	70	120	
II(AD)	A-D port input current				5.0	$\mu \mathrm{A}$

Table 13 Timing requirements (1)
(VCC = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width	15			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTR)	CNTRo input cycle time	200			ns
twh(CNTR)	CNTRo, INT0, INT1, input "H" pulse width	80			ns
twL(CNTR)	CNTR0, INT0, INT1, input "L" pulse width	80			ns
tc(Sclk)	Serial I/O2 clock input cycle time	1000			ns
twh(Sclk)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SCLK-SDATA)	Serial I/O2 input set up time	200			ns
th(ScLK-SdAtA)	Serial I/O2 input hold time	200			ns

Table 14 Timing requirements (2)
(Vcc = 2.2 to 5.5 V or 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
tw($\overline{\text { RESET }})$	Reset input "L" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	45			$\mu \mathrm{s}$
		$\mathrm{Vcc}=2.4$ to 5.5 V	35			$\mu \mathrm{s}$
tc (XIN)	External clock input cycle time	$\mathrm{Vcc}=2.2$ to 5.5 V	500			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	250			ns
twh(XIN)	External clock input "H" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	200			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	100			ns
twL (XIN)	External clock input "L" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	200			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	100			ns
tc(CNTR)	CNTRo input cycle time	$\mathrm{Vcc}=2.2$ to 5.5 V	1000			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	500			ns
twh(CNTR)	CNTR0, INT0, INT1, input "H" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	460			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	230			ns
twL(CNTR)	CNTR0, INT0, INT1, input "L" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	460			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	230			ns
tc(ScLK)	Serial I/O2 clock input cycle time	$\mathrm{Vcc}=2.2$ to 5.5 V	4000			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	2000			ns
twh(SCLK)	Serial I/O2 clock input "H" pulse width	$\mathrm{VCC}=2.2$ to 5.5 V	1900			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	950			ns
tWL(SCLK)	Serial I/O2 clock input "L" pulse width	$\mathrm{Vcc}=2.2$ to 5.5 V	1900			ns
		$\mathrm{Vcc}=2.4$ to 5.5 V	950			ns
tsu(SCLK-SDATA)	Serial I/O2 input set up time		400			ns
th(Sclk-SdAtA)	Serial I/O2 input hold time		400			ns

Table 15 Switching characteristics (1)
(Vcc = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(Sclk)	Serial I/O2 clock output "H" pulse width	tc(SCLK)/2-30			ns
twL(Sclk)	Serial I/O2 clock output "L" pulse width	tc(SCLK)/2-30			ns
td(Sclk-SdATA)	Serial I/O2 output delay time			140	ns
tv(Sclk-Sdata)	Serial I/O2 output valid time	0			ns
tr(SCLK)	Serial I/O2 clock output rising time			30	ns
tf(SCLK)	Serial I/O2 clock output falling time			30	ns
tr (CMOS)	CMOS output rising time (Note 1)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	30	ns

Note 1: Pin Xout is excluded.
Table 16 Switching characteristics (2)
(Vcc = 2.2 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(ScLK)	Serial I/O2 clock output "H" pulse width	tc(SCLK)/2-50			ns
tWL(Sclk)	Serial I/O2 clock output "L" pulse width	tc(SCLK)/2-50			ns
td(Sclk-SdATA)	Serial I/O2 output delay time			350	ns
tv(Sclk-Sdata)	Serial I/O2 output valid time	0			ns
tr(SCLK)	Serial I/O2 clock output rising time			50	ns
tf(ScLK)	Serial I/O2 clock output falling time			50	ns
tr (CMOS)	CMOS output rising time (Note 1)		20	50	ns
tf (CMOS)	CMOS output falling time (Note 1)		20	50	ns

Note 1: Pin Xout is excluded.

Fig. 45 Switching characteristics measurement circuit diagram (General purpose)

Fig. 46 Timing chart (General purpose)
(2) 7531 Group (Extended operating temperature version)

Applied to: M37531M4T-XXXFP/SP/GP, M37531E4T-XXXGP

Table 17 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 7.0	V
VI	Input voltage $\mathrm{PO} 0-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27$, $\mathrm{P} 30-\mathrm{P} 37, \mathrm{VREF}$		-0.3 to Vcc +0.3	V
VI	Input voltage $\overline{\text { RESET, XIN }}$		-0.3 to Vcc +0.3	V
VI	Input voltage CNVSS (Note 1)		-0.3 to 13	V
Vo	Output voltage$\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 27$, $\mathrm{P} 30-\mathrm{P} 37$, XOUT		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	300 (Note 2)	mW
Topr	Operating temperature		-40 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

Notes 1: It is a rating only for the One Time PROM version. Connect to Vss for the mask ROM version.
2: 200 mW for the 32P6B package version.

Table 18 Recommended operating conditions (1)
(Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$f($ XIN $)=4 \mathrm{MHz}$ (Double-speed mode)	4.0	5.0	5.5	V
		$f($ XIN $)=2 \mathrm{MHz}$ (Double-speed mode)	2.4	5.0	5.5	V
	Power source voltage (CR)	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
Vss	Power source voltage			0		V
VREF	Analog reference voltage		2.0		Vcc	V
VIH	"H" input voltage	P00-P07, P10-P14, P20-P27, P30-P37	0.8 Vcc		Vcc	V
VIH	"H" input voltage (TTL input level selected)	P10, P12, P13, P36, P37 (Note 1)	2.0		Vcc	V
VIH	"H" input voltage	RESET, XIN	0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P14, P20-P27, P30-P37	0		0.3Vcc	V
VIL	"L" input voltage (TTL input level selected)	P10, P12, P13, P36, P37 (Note 1)	0		0.8	V
VIL	"L" input voltage	RESET, CNVss	0		0.2Vcc	V
VIL	"L" input voltage	XIN	0		0.16 Vcc	V
$\sum \mathrm{IOH}$ (peak)	"H" total peak output current (Note 2)	P00-P07, P10-P14, P20-P27, P30-P37			-80	mA
$\sum \mathrm{IOL}$ (peak)	"L" total peak output current (Note 2)	P00-P07, P10-P14, P20-P27, P37			80	mA
$\sum \mathrm{IOL}$ (peak)	"L" total peak output current (Note 2)	P30-P36			60	mA
Eloh(avg)	" H " total average output current P00-P07, P10-P14, P20-P27, P30-P37 (Note 2)				-40	mA
$\sum \mathrm{lOL}(\mathrm{avg})$	"L" total average output current P00-P07, P10-P14, P20-P27, P37 (Note 2)				40	mA
$\sum \mathrm{loL}(\mathrm{avg})$	"L" total average output current P30-P36 (Note 2)				30	mA

Note 1: Vcc $=4.0$ to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Table 19 Recommended operating conditions (2)
(Vcc = 2.4 to 5.5 V , $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current (Note 1) P00-P07	P00-P07, P10-P14, P20-P27, P30-P37			-10	mA
IOL(peak)	"L" peak output current (Note 1) P00-P07	P00-P07, P10-P14, P20-P27, P37			10	mA
IOL(peak)	"L" peak output current (Note 1) P30-P3	P30-P36			30	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current (Note 2) P00-P07	P00-P07, P10-P14, P20-P27, P30-P37			-5	mA
IOL(avg)	"L" average output current (Note 2) P00-P07	P00-P07, P10-P14, P20-P27, P37			5	mA
IOL(avg)	"L" average output current (Note 2) P30-P36	P30-P36			15	mA
$\mathrm{f}(\mathrm{XIN})$	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=4.0$ to 5.5 V Double-speed mode			4	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	Vcc $=2.4$ to 5.5 V Double-speed mode			2	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { Vcc }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			8	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { Vcc }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { Vcc }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { Vcc }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz

Notes 1: The peak output current is the peak current flowing in each port
2: The average output current loL (avg), IOH (avg) in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Table 20 Electrical characteristics
(Vcc = 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Notes 1: P11 is measured when the P11/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".
2: RXD, SCLK, SDATA, INTo and INT1 have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level).
3: It is available only when operating key-on wake up.

Table 21 A-D Converter characteristics
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				10	Bits
-	Linearity error	$\begin{aligned} & \mathrm{Vcc}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 3	LSB
-	Differential nonlinear error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 0.9	LSB
Vot	Zero transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	0	5	20	mV
		VcC $=$ VREF $=3.072 \mathrm{~V}$	0	3	15	mV
VFST	Full scale transition voltage	$\mathrm{VCC}=\mathrm{V}$ REF $=5.12 \mathrm{~V}$	5105	5115	5125	mV
		$\mathrm{VCC}=\mathrm{VREF}=3.072 \mathrm{~V}$	3060	3069	3075	mV
tconv	Conversion time				122	tc(XIN)
Rladder	Ladder resistor			55		k Ω
Ivref	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
		VREF $=3.0 \mathrm{~V}$	30	70	120	
II(AD)	A-D port input current				5.0	$\mu \mathrm{A}$

Table 22 Timing requirements (1)
(Vcc $=4.0$ to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	15			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTR)	CNTRo input cycle time	200			ns
twh(CNTR)	CNTR0, INT0, INT1 input "H" pulse width	80			ns
twL(CNTR)	CNTR0, INT0, INT1 input "L" pulse width	80			ns
tc(ScLK)	Serial I/O2 clock input cycle time	1000			ns
twH(SCLK)	Serial I/O2 clock input "H" pulse width	400			ns
twL(SCLK)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(Sclk-Sdata)	Serial I/O2 input set up time	200			ns
th(Sclk-Sdata)	Serial I/O2 input hold time	200			ns

Table 23 Timing requirements (2)
(Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width	35			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTR)	CNTRo input cycle time	500			ns
twh(CNTR)	CNTRo, INT0, INT 1 input " H " pulse width	230			ns
twL(CNTR)	CNTRo, INT0, INT 1 input " L " pulse width	230			ns
tc(ScLk)	Serial I/O2 clock input cycle time	2000			ns
twH(SCLK)	Serial I/O2 clock input "H" pulse width	950			ns
twL(Sclk)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SCLK-SDATA)	Serial I/O2 input set up time	400			ns
th (ScLK-Sdata)	Serial I/O2 input hold time	400			ns

Table 24 Switching characteristics (1)
(Vcc = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tWH(SCLK)	Serial I/O2 clock output "H" pulse width	tc(SCLK)/2-30			ns
twL(SCLK)	Serial I/O2 clock output "L" pulse width	tc(SCLK)/2-30			ns
td(SCLK-SDATA)	Serial I/O2 output delay time			140	ns
tv(Sclk-Sdata)	Serial I/O2 output valid time	0			ns
tr(SCLK)	Serial I/O2 clock output rising time			30	ns
tf(ScLK)	Serial I/O2 clock output falling time			30	ns
tr (CMOS)	CMOS output rising time (Note 1)		10	30	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	30	ns

Note 1: Pin Xout is excluded.

Table 25 Switching characteristics (2)
(Vcc = 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(SCLK)	Serial I/O2 clock output "H" pulse width	tc(SCLK)/2-50			ns
twL(SCLK)	Serial I/O2 clock output "L" pulse width	tc(SCLK)/2-50			ns
td(SCLK-SDATA)	Serial I/O2 output delay time			350	ns
tv(Sclk-SdATA)	Serial I/O2 output valid time	0			ns
tr (SCLK)	Serial I/O2 clock output rising time			50	ns
tf(ScLK)	Serial I/O2 clock output falling time			50	ns
tr (CMOS)	CMOS output rising time (Note 1)		20	50	ns
$\mathrm{tf}(\mathrm{CMOS})$	CMOS output falling time (Note 1)		20	50	ns

Note 1: Pin XOUT is excluded.

Fig. 47 Switching characteristics measurement circuit diagram (Extended operating temperature version)

Fig. 48 Timing chart (Extended operating temperature version)
(3) 7531 Group (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Applied to: M37531M4V-XXXGP, M37531E4V-XXXGP

Table 26 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 7.0	V
VI	Input voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 25$, $\mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 37$, VREF		-0.3 to Vcc +0.3	V
VI	Input voltage $\overline{\text { RESET, XIN }}$		-0.3 to Vcc +0.3	V
VI	Input voltage CNVss (Note 1)		-0.3 to 13	V
Vo	Output voltage $\mathrm{P} 00-\mathrm{P0} 0, \mathrm{P} 10-\mathrm{P} 14, \mathrm{P} 20-\mathrm{P} 25$, $\mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 37, \mathrm{XOUT}$		-0.3 to Vcc +0.3	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	200	mW
Topr	Operating temperature (Note 2)		-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-65 to 150	${ }^{\circ} \mathrm{C}$

[^0]Table 27 Recommended operating conditions (1)
(Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
Vcc	Power source voltage (ceramic)	$\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (Double-speed mode)	4.0	5.0	5.5	V
		$\mathrm{f}(\mathrm{XIN})=2 \mathrm{MHz}$ (Double-speed mode)	2.4	5.0	5.5	V
	Power source voltage (CR)	$\mathrm{f}(\mathrm{XIN})=4 \mathrm{MHz}$ (High-, Middle-speed mode)	4.0	5.0	5.5	V
		$f($ XIN $)=2 \mathrm{MHz}$ (High-, Middle-speed mode)	2.4	5.0	5.5	V
Vss	Power source voltage			0		V
Vref	Analog reference voltage		2.0		Vcc	V
VIH	"H" input voltage	P00-P07, P10-P14, P20-P25, P30-P34, P37	0.8 Vcc		Vcc	V
VIH	" H " input voltage (TTL input level selected)	P10, P12, P13, P37 (Note 1)	2.0		Vcc	V
VIH	"H" input voltage	RESET, XIN	0.8Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P14, P20-P25, P30-P34, P37	0		0.3Vcc	V
VIL	"L" input voltage (TTL input level selected)	P10, P12, P13, P37 (Note 1)	0		0.8	V
VIL	"L" input voltage	RESET, CNVss	0		0.2 Vcc	V
VIL	"L" input voltage	XIN	0		0.16 Vcc	V
\IoH(peak)	"H" total peak output current (Note 2)	P00-P07, P10-P14, P20-P25, P30-P34, P37			-80	mA
EloL(peak)	"L" total peak output current (Note 2)	P00-P07, P10-P14, P20-P25, P37			80	mA
IIOL(peak)	"L" total peak output current (Note 2)	P30-P34			60	mA
Гloh(avg)	"H" total average output current P00-P07, P10-P14, P20-P25, P30-P34, P37 (Note 2)				-40	mA
EloL(avg)	"L" total average output current P00-P07, P10-P14, P20-P25, P37 (Note 2)				40	mA
$\Sigma \mathrm{loL}$ (avg)	"L" total average output current P30-P34(Note 2)				30	mA

Note 1: Vcc = 4.0 to 5.5 V
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Table 28 Recommended operating conditions (2)
(Vcc = 2.4 to 5.5 V , $\mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current (Note 1) P00-P07	P00-P07, P10-P14, P20-P25, P30-P34, P37			-10	mA
IOL(peak)	"L" peak output current (Note 1) P00-P07	P00-P07, P10-P14, P20-P25, P37			10	mA
IOL(peak)	"L" peak output current (Note 1) P30-P34	P30-P34			30	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current (Note 2) P00-P07	P00-P07, P10-P14, P20-P25, P30-P34, P37			-5	mA
IOL(avg)	"L" average output current (Note 2) P00-P07	P00-P07, P10-P14, P20-P25, P37			5	mA
IOL(avg)	"L" average output current (Note 2) P30-P34	P30-P34			15	mA
f (XIN)	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\mathrm{Vcc}=4.0$ to 5.5 V Double-speed mode			4	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	Vcc $=2.4$ to 5.5 V Double-speed mode			2	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			8	MHz
	Oscillation frequency (Note 3) at ceramic oscillation or external clock input	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VCC }=4.0 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			4	MHz
	Oscillation frequency (Note 3) at RC oscillation	$\begin{aligned} & \text { VCC }=2.4 \text { to } 5.5 \mathrm{~V} \\ & \text { High-, Middle-speed mode } \end{aligned}$			2	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current loL (avg), loH (avg) in an average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Table 29 Electrical characteristics
(Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Notes 1: P11 is measured when the P11/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0". 2: RXD, ScLK, SDATA, and INTo have hysteresises only when bits 0 to 2 of the port P1P3 control register are set to " 0 " (CMOS level). 3: It is available only when operating key-on wake up.

Table 30 A-D Converter characteristics
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
-	Resolution				10	Bits
-	Linearity error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 3	LSB
-	Differential nonlinear error	$\begin{aligned} & \mathrm{VCC}=2.7 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$			± 0.9	LSB
VOT	Zero transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	0	5	20	mV
		$\mathrm{Vcc}=\mathrm{VREF}=3.072 \mathrm{~V}$	0	3	15	mV
VFST	Full scale transition voltage	$\mathrm{VCC}=\mathrm{VREF}=5.12 \mathrm{~V}$	5105	5115	5125	mV
		$\mathrm{Vcc}=\mathrm{VREF}=3.072 \mathrm{~V}$	3060	3069	3075	mV
tCONV	Conversion time				122	tc(XIN)
Rladder	Ladder resistor			55		$\mathrm{k} \Omega$
IVREF	Reference power source input current	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$
		VREF $=3.0 \mathrm{~V}$	30	70	120	
II(AD)	A-D port input current				5.0	$\mu \mathrm{A}$

Table 31 Timing requirements (1)
(Vcc = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}$, $\mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input " L " pulse width	15			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTR)	CNTRo input cycle time	200			ns
twh(CNTR)	CNTRo, INT0 input "H" pulse width	80			ns
twL(CNTR)	CNTRo, INT0 input "L" pulse width	80			ns
tc(Sclk)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(Sclk-Sdata)	Serial I/O2 input set up time	200			ns
th(ScLK-SdAtA)	Serial I/O2 input hold time	200			ns

Table 32 Timing requirements (2)
(Vcc = 2.4 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw(RESET)	Reset input "L" pulse width	35			$\mu \mathrm{s}$
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTR)	CNTRo input cycle time	500			ns
twh(CNTR)	CNTRo, INT0, input "H" pulse width	230			ns
twL(CNTR)	CNTRo, INT0, input "L" pulse width	230			ns
tc(Sclk)	Serial I/O2 clock input cycle time	2000			ns
tWH(SCLK)	Serial I/O2 clock input "H" pulse width	950			ns
twL(ScLK)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(ScLK-SDATA)	Serial I/O2 input set up time	400			ns
th(SCLK-SDATA)	Serial I/O2 input hold time	400			ns

Table 33 Switching characteristics (1)
(VCC = 4.0 to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tWH(SCLK)	Serial I/O2 clock output "H" pulse width	tc(ScLK)/2-50			ns
twL(SCLK)	Serial I/O2 clock output "L" pulse width	tc(Sclk)/2-50			ns
td(Sclk-SdATA)	Serial I/O2 output delay time			200	ns
tv(Sclk-Sdata)	Serial I/O2 output valid time	0			ns
tr(SCLK)	Serial I/O2 clock output rising time			50	ns
tf(SCLK)	Serial I/O2 clock output falling time			50	ns
tr (CMOS)	CMOS output rising time (Note 1)		10	50	ns
tf(CMOS)	CMOS output falling time (Note 1)		10	50	ns

Note 1: Pin Xout is excluded.

Table 34 Switching characteristics (2)
(Vcc = 2.4 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-40$ to $125^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
twh(Sclk)	Serial I/O2 clock output "H" pulse width	tc(SCLK)/2-80			ns
tWL(Sclk)	Serial I/O2 clock output "L" pulse width	tc(SCLK)/2-80			ns
td(SCLK-SDATA)	Serial I/O2 output delay time			400	ns
tv(Sclk-SdATA)	Serial I/O2 output valid time	0			ns
tr(SCLK)	Serial I/O2 clock output rising time			80	ns
tt(SCLK)	Serial I/O2 clock output falling time			80	ns
tr (CMOS)	CMOS output rising time (Note 1)		20	80	ns
tf(CMOS)	CMOS output falling time (Note 1)		20	80	ns

Note 1: Pin XOUT is excluded.

Fig. 49 Switching characteristics measurement circuit diagram (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

Fig. 50 Timing chart (Extended operating temperature $125^{\circ} \mathrm{C}$ version)

PACKAGE OUTLINE

32P6B-A

36P2R-A

- Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
product distributor for the latest product information before purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Rev. No.	Revision Description	Rev. date
1.0	First Edition	970822
2.0	Page 1; FEATURES	980220

In Programmable I/O ports, the pin number of 32-pin version is added.
In Power source voltage, two conditions are added and two are revised.
Page 8; Central Processing Unit (CPU)
The name of manual, 740 Family Software Manual, is revised.
Fig. 11; Note is added.
Page 11; [Direction registers] PiD
The sentences are revised: Pins set to input are floating, and permit reading pin values.
Fig. 12; Bit function and the initial value are added.
Fig. 13; The figure name is revised: port P1P3 control register.
Page 15; Interrupt operation
The order of No. 3 and 4 is revised.
Fig. 17; Four bit names are revised: Serial I/O1.
Page 21; [Serial I/O1 status register] SIO1STS
Explanations are partly revised.
Fig. 25; Bits 6 and 7 explanations of serial I/O1 control register are revised.
Page 23; [Serial I/O2 control register] SIO2CON
Explanations are partly revised.
Fig. 26; Bit 3 explanations are revised. Note is partly revised.

Page 27; Reset Circuit

Explanations are partly revised: In the case of $f(f)$..
Fig. 35; The waveform of clock from built-in ring oscillator is revised. Note 1 is revised.
Fig. 36; (6) Port P1P3 control register is added.
Page 32; A-D Converter
Explanations are partly revised: The WIT instruction is eliminated.
Page 33; DATA REQUIRED FOR ROM PROGRAMMING ORDERS
This clause is added.
Table 7; Characteristics of Vcc is revised.
Table 8; Characteristics of $f(X i N)$ is revised.
Table 9; Characteristics of Icc is revised.
Table 12; Characteristics of $\mathrm{tc}(\mathrm{XIN}), \mathrm{twh}(\mathrm{XIN}), \mathrm{twL}(\mathrm{XIN}), \mathrm{tc}(\mathrm{CNTR}), \mathrm{twh}(\mathrm{CNTR}), \mathrm{twL}(\mathrm{CNTR})$, tc(SCLK), twh(SCLK) and twL(SCLK) are revised.
Pages 42 to 45; MASK ROM CONFIRMATION FORM
These are added.
Pages 46 and 47; ROM PROGRAMMING CONFIRMATION FORM
These are added.

Rev. No.	Revision Description	Rev. date
4.1	Page 1: Power dissipation to 25 mW Operating temperature range; Note deleted Page 8: Fig. 8 "Under development" revised Page 10: Fig. 11 Start address of Interrupt vector area to FFEC16 Page 25: Fig. 29 Note revised Page 28: Description revised; $\overline{R E S E T}$ "L" pulse width $2 \mu \mathrm{~s} \rightarrow 15 \mu \mathrm{~s}$ Page 32: Fig. 42 Rd resistor connected to Xout pin eliminated Page 39: Table 12 Absolute accuracy (excluding quantization error) \rightarrow Linearity error Page 40: Table $13 \mathrm{tw}(\overline{\mathrm{RESET}})$ revised; $2 \mu \mathrm{~s} \rightarrow 15 \mu \mathrm{~s}$ Table $14 \mathrm{tw}(\overline{\text { RESET }})$ revised; $2 \mu \mathrm{~s} \rightarrow 45 \mu \mathrm{~s}$ at $\mathrm{VcC}=2.2$ to $5.5 \mathrm{~V}, 35 \mu \mathrm{~s}$ at $\mathrm{VcC}=2.4$ to 5.5 V Page 47: Table 21 Absolute accuracy (excluding quantization error) \rightarrow Linearity error Page 48: Table 22 tw($(\overline{R E S E T})$ revised; $2 \mu \mathrm{~s} \rightarrow 15 \mu \mathrm{~s}$ Table $23 \mathrm{tw}(\overline{\mathrm{RESET}})$ revised; $2 \mu \mathrm{~s} \rightarrow 35 \mu \mathrm{~s}$ Page 55: Table 30 Absolute accuracy (excluding quantization error) \rightarrow Linearity error Page 56: Table $31 \mathrm{tw}(\overline{\mathrm{RESET}})$ revised; $2 \mu \mathrm{~s} \rightarrow 15 \mu \mathrm{~s}$ Table $32 \mathrm{tw}(\overline{\mathrm{RESET}})$ revised; $2 \mu \mathrm{~s} \rightarrow 35 \mu \mathrm{~s}$	000615
4.2	Pages 28, 32: Character fonts errors revised	000905

[^0]: Notes 1: It is a rating only for the One Time PROM version. Connect to Vss for the mask ROM version. 2: The total time is limited as follows:

 6000 hours at 55 to $85^{\circ} \mathrm{C}, 1000$ hours at 85 to $125^{\circ} \mathrm{C}$

